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Abstract. The performance of several neural-network-like models for pattern recognition 
tasks is analysed. A comparison based on recognition of random points in a multi- 
dimensional space is made between backpropagation, learning vector quantisation and 
three variations of Boltzmann machine models. The ordinary Boltzmann machine is found 
to perform well although at the expense of being time consuming. Replacement of the 
Monte Carlo method in the Boltzmann machine by a direct formula promises faster 
evaluation without significant loss of precision. 

1. Introduction 

Models of neural networks ( N N S )  belong to a computing paradigm which can be seen 
as an alternative or counterpart to the conventional sequential (von Neumann) comput- 
ing. Although N N S  date back as far as the 1940s, the recent interest among physicists 
resulted from the finding of some probabilistic models, like the Hopfield network [ 11 
and the Boltzmann machine ( BM) [2] analogous to statistical mechanical systems, e.g. 
spin glasses. The realisation of this connection has also made it possible to exploit 
the powerful methods of statistical physics. 

A N N S  is an ‘intelligent’ system which mimics some of the structures and functions 
of natural neural networks. It consists of simple processing units, ‘neurons’ that are 
connected to form a network. Each unit performs a weighted sum of all its inputs and 
applies a non-linear (sigmoid or threshold) function to be delivered to a single output. 
The difference from conventional computing devices manifests itself in that N N S  are 
not programmed, but the connecting weights between units are changed adaptively, 
according to the environment. Although the threshold logic and Boolean logic networks 
are functionally the same, NNS have several advantages over conventional von Neumann 
computers. They are inherently parallel, adaptive and fault-tolerant architectures. 
From the pattern classification point of view, NNS can be considered using non- 
parametric methods. They can form arbitrarily complex decision surfaces, and this 
can be done adaptively, without any apriori knowledge about the nature of the problem. 

There are several neural-network-like models which can be used for solving pattern 
recognition tasks. Huang and Lippmann [3] made a comparison among the backpropa- 
gation (BP)  [4] and some conventional Bayesian classifiers. Barna, Chrisley and 
Kohonen [5] have presented a comparison among BP, B M  and learning vector quantisa- 
tion (LVQ) [6]. In  the latter, the BM emerged as the method of highest precision, though 
it proved to be the most time consuming algorithm. Replacement of the Monte Carlo 
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( M C )  method in the B M  by a direct formula promises faster evaluation without significant 
loss of precision [ 7 ] .  

In this paper we compare the performance of various NN algorithms in a statistical 
pattern recognition task. Probabilistic networks have been emphasised by investigating 
variations of the Boltzmann machine. We have developed a new deterministic variation 
of the previously known stochastic Boltzmann machine and deterministic mean-field 
theory Boltzmann machine ( M F B )  [ 7 ] .  Our deterministic Boltzmann machine (DBM) 
differs from M F B  in that it uses a two-step method instead of iteration. 

In  the experiments the B M  and the M F B  performed best and the D B M  was fairly 
close to them. The performance of B P  and LVQ is good only at  lower dimensions. The 
mean-field Boltzmann machine is found to be faster than the ordinary Boltzmann 
machine but not with the magnitude given in [ 7 ] .  Also the DBM is shown to be faster 
than the MFB. The speed of backpropagation and  learning vector quantisation were 
not compared with the variations of the Boltzmann machide but both of them are 
known to be fast algorithms. 

2. The Boltzmann machine 

The Boltzmann machine is a probabilistic network consisting of binary units (s ,)  which 
are fully connected by symmetrical bidirectional links (w,, = w,,). The behaviour of 
the network is governed by an  energy (Liapunov) function: 

E = - C  wijsisj + bisi s i ~ { O , l } ,  w u e R 1 , i = l , . . . , n  
i<J I 

where the second term can be absorbed into the first term by a link to an  additional 
unit being always in state 1 (w, , , ,+ ,  = b,, sntl  = 1 ) .  In physics this equation stands for 
a spin-glass Hamiltonian, with the first term describing the interactions between spins 
(s, = +1 or - 1 )  and the second an  external magnetic field. In N N  language, however, 
the first term describes connection weights between units and the second term acts as 
a threshold. The energy function can form a very complex landscape with many local 
extrema. 

The idea behind the B M  approach is to shape the energy surface by changing w,, 
and thereby get the desired stable states to correspond to learned patterns. This task 
is realised stochastically by decreasing the energy of the system with the simulated 
annealing method [8]. This Monte Carlo approach is used to avoid high-energy local 
minima in the energy landscape. 

The probability of the network being in state CY is determined by the energy function 
(see equation ( l ) ) ,  according to the Boltzmann distribution: 

Thus the lower the energy E ,  of the network, the more probable is the state a. I n  ( 2 ) ,  
T is analogous to the temperature of a physical system. Now if the temperature T 
decreases, a low-energy state becomes more probable, i.e. the distribution becomes 
narrower and  energy barriers between local energy minima become relatively higher. 
Considering all the units but s, fixed, ( 2 )  yields the probability of s, being 1: 

1 
P (  s, = 1) = L E ,  = w,,s,. 

1 + exp( - A E , /  T )  I * '  
(3) 
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The BM can be formulated to solve pattern recognition tasks by clamping a subset 
of the units, namely input units, to the input pattern and  expecting that another subset, 
namely the output units, changes to the desired pattern which labels the class to which 
the input pattern belongs. The information-theoretical Kullbach-Rhyi measure is 
used to describe the difference between the desired probability P,, and the actual 
probability PL: 

The derivative of the measure G gives the learning rule: 

where (s,s,) and (s,~,)’ are the desired and the actual mean values of s,s,, respectively. 
These means in fact describe correlations between units i and j and they can be related 
to the probabilities that both of them are simultaneously 1. The first term in (4) 
describes the Hebbian kind of learning while the second term describes ‘unlearning’. 
Statistics for these mean values are collected after lowering the temperature T to a 
given final value To and  allowing the network to equilibrate. The purpose of this 
simulated ‘cooling’ [8] in small steps from a high initial temperature to a low tem- 
perature (T,,, Tn-,  , . . . , To) is to avoid high local energy minima during the learning 
and  also the recognition phase. This is realised with the Metropolis Monte Carlo 
method, which sets the fluctuation scales of the system and thus allows ‘hill climbing’ 
in the energy landscape. The simulated annealing method is known to perform well 
in optimisation problems. 

3. The mean-field Boltzmann machine 

The Boltzmann machine algorithm is stochastic in nature and thus brings u p  some 
drawbacks. For example, cooling down the system and  also collecting statistics for 
the mean values in (4) takes a considerable amount of computing time. Therefore, it 
is worthwhile to seek ways to substitute the MC method by some other, hopefully 
analytical, method. From statistical mechanics we know that there is, indeed, an  
analytical but approximative mean-field theory ( MFT) approach to solving properties 
of stochastic systems. The basic idea behind MFT is to suppress fluctuations by replacing 
the fluctuating s, values by their averages. One important justification for searching 
this kind of deterministic method is its inherent parallelism, which would allow one 
to take full advantage of parallel processors. 

Peterson and  Anderson [7] devised the M F B  by replacing in (4) the mean value of 
the product s,s, by the product of their individual mean values: 

(s,s,) = b,?b,?. 
Each (s,) is computed from the following system of equations: 
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Let us consider (s,) as a variable and start 
Then we can write the following recursion 

1 

1 +exp(-AEj"/ 7') s: ' + ' ' := 

which can reach a stable fixed point. 

from an arbitrary set of initial values s',"'. 
equation: 

S ) l ' E  (0, 1) i =  1 , .  . . , n (5) 

For certain tasks Peterson and Anderson found this method at least one magnitude 
faster than the ordinary Boltzmann machine. In addition they could reduce the number 
of necessary samples. They have studied the exclusive-or (XOR) ,  encoder and  the line 
symmetry problems which are considered as non-trivial for a neural network model. 
The XOR (or  two-dimensional parity) problem consists of classifying the two bit input 
patterns as to whether or not they are identical. In the encoder problem the input-output 
pattern pairs should be associated together, and  for the line symmetrq problem the 
task is to recognise whether the input patterns are symmetrical or not. 

4. The deterministic Boltzmann machine 

As mentioned above, the deterministic approach, as employed in the MFB, promises 
a speed-up in comparison with the stochastic approach but without significant loss of 
accuracy, This gives us the idea of searching for other, deterministic algorithms, more 
suitable for applications and  hardware implementations than the EM. On the other 
hand, the number of cooling steps and the amount of statistics in B M  yield only 
approximations to the accurate result. Also, the MFB itself is an approximation. Hence, 
from the theoretical point of view it is interesting to study how far one can keep 
approximating the Boltzmann machine without losing too much of its inherent 
capabilitities. 

Next we will propose a new method, called the deterministic Boltzmann machine 
( D B M )  which is based on a simple minimum search principle so that the largest possible 
step towards the energy minimum is made. This is somewhat reminiscent of the 
steepest-descent minimisation method. Our method is deterministic like the MFB, so 
it can offer some speed-up with hopefully small loss of accuracy as compared with 
the ordinary BM. Another distinction is that while the mean-field Boltzmann machine 
iterates towards a fixed point, which is somehow related to the energy minimum, the 
deterministic Boltzmann machine uses another, direct method to get close to that 
energy minimum. It is a two-step process with discrete and continuous s, values in 
the first and  second step, respectively. 

In the first step the units have three values: s, E {0,0.5, l}. The additional value 0.5 
is introduced for starting purposes. Thus the network is initiated from a homogeneous 
state: 

31"' := 0.5 i =  1 , .  . . , n 

and for every iteration the energy E decreases by updating only one unit at a time: 
s;l+ll:= s:l l i = l ,  . . . ,  k - l , k + l ,  . . . ,  n ;  
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The updated k unit is always the one with which the largest decrease in the energy 
function can be achieved: 

Here A stands for the set of possible energy changes, which would decrease E :  

A={i l s l "=0 .5and AEi"#O or s ' ,"=l and  A E : " < O  or s',"=O and AEj">O}. 

The iteration continues until the energy keeps decreasing. The algorithm does not 
specify how many times a unit will be updated before the set A becomes empty. 
However, in our experiments updatings are practically always performed just once (a 
second update was very rare). 

The first step of the DBM serves the purpose of getting close to the energy minimum 
as fast as possible. The second step recalls the MFT idea by obtaining mean values for 
the s, of the network. But as we start from a state of the network which is already 
close the the energy minimum it seems sufficient to use (5)  only once. This method 
has two advantages over the MFB. First, it is not an iterative but a two-step algorithm. 
Second, it avoids heavy matrix-vector multiplications. In fact, the D B M  can be realised 
using only additive operations and the sigmoid function. 

For the BM and the M F B  the desired values of the output units are 0 and 1. However, 
this did not prove to be suitable for the DBM. It is more appropriate to set the desired 
values closer to the possible values which the network can achieve with the given 
weights. For a particular input pattern, the possible minimum and maximum values 
of the energy change AE, for unit i can be determined as 

AE: = max(0, w,,} 

AE; = min(0, wv} 

I" 

so that LE;  s AE, s AEY 
I" 

For any change of other units, the value of unit i can be bound: 

1 s s, s 1 
1 + exp( -A  E ;/ T )  l+exp(-AE: /T) '  

The desired states of the output units are set as continuous functions of AE: or AE; 
instead of the rigid 0 or 1:  

s, = 
1 

1 +exp(-cyAE;/T) 
instead of 0 

1 
1 + exp( - a A E : /  T )  

instead of 1 s, E {output units}, 0 < cy s 1. s, = 

One should bear in mind that with finite simulation times, e.g. stopping the cooling 
at non-zero temperature, the Boltzmann machine is not guaranteed to converge to a 
global energy minimum. In this situation the Boltzmann machine learning does not 
rely on finding the global minimum but rather associates the learned patterns to well 
defined states of the system. Nevertheless, these states are likely to be strongly related 
to the global or near-global energy minima. This is of course the case with the DBM, 
although we expect it to be somewhat further away from the energy minimum. But 
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this is not a serious handicap as far it does not confuse the learning. In particular this 
turned out to be the case in problems discussed in B 5. The other reason for expecting 
the DBM to have good convergence properties is based on the similarity of the second 
step of the DBM algorithm with the M F B  algorithm. 

5. Experimental set-up 

In this paper we have made comparison between various neural network models using 
the same statistical pattern recognition task as in [ 5 ] .  We believe that this gives 
somewhat wider scope to the performance analysis of N N S  than the tasks used in [7]. 
For completeness, we will next review this statistical pattern recognition task. 

The input samples to be recognised are random points in a multidimensional space. 
Each class is represented by a multivariate probability distribution. In the experiments 
shown below, there are two classes with circular Gaussian (or normal) distribution: 

N ,  = N ( m , ,  R,)  

m,  = O  

m , E R d , R , E R d x d ,  i = 1 , 2  

m z =  ( r ,  0, .  . . ,0)  

R,  = [ y  ... 0) U ,  = 1, f f z  = 2. 

We have considered two tasks, one with different means (difference r = J =  for 
historical reasons) and the other with the same means of the two classes ( r  = 0) called 
‘easy’ and  ‘hard’, respectively (see figure 1). The dimensionality is set to vary from 2 
to 8 for each task so that there are 14 different problems to solve. 

(a1 ( b )  

Figure 1. The representation of the two tasks on R2 ( d  = 2 ) .  The Gaussian probability 
distributions are represented by circles with radius equal to deviations 0,. The broken 
circle is the decision boundary. The ’easy’ task is illustrated in ( a )  and the ‘hard’ task in 
( b ) .  

The B M  can be considered as an  input-output machine so that the set {a} is divided 
into three parts: input, output and hidden units. The input units are always clamped 
by the input pattern, the hidden units are always free to change and the output units 
are clamped by the desired state or they are free to change during the collection of 
statistics for the means (s,s,) or  (sJ,)’, respectively. For updating the network connec- 
tions w,,, only the sign of the right-hand side of (4) is used: 

Awl, := A w  sgn((s!s,)-(s,s,)’). 
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0.5- 

0- 

This is taking place after sufficient statistics have been collected. In our experiments 
we have used lo3 input samples. The temperature parameter T and the step size Aw 
for changing the cotnection weights decrease over time with the following schedule: 

T':= 1.3+0.7 max(0, 1 - f/130} 

A W '  := 0.125 * 0.99' f = 1 ,  . . . ,400. 

Although the BM can be formulated as having continuous input values, the binary- 
valued input units are preferable [5,9]. Therefore, we have digitised their values as 
follows. In each dimension twenty ranges are determined. Every input unit belongs 
to one of the twenty ranges and all of them are set to 0 except the one, which is set 
to 1, that is associated with the input value of the dimension. 

The network consists of 2 0 d  input, four hidden and two output units. Initially 
the values are zero for the biases ( b i )  and small random values for the connections 
(w,,) .  The configuration is the same for all three machines. 

For the B M ,  three-step annealing and two-step relaxation was used. In the M F B  

two iterations of ( 5 )  were executed. These are notably small values. However, using 
one magnitude slower annealing for every sample in the B M  and also using one 
magnitude more iteration in the M F B  the results were not better than those shown 
below. In the DBM all units are updated twice. 

1- / 0 \  / 
'-1 .... / 7./' 

/ , / *  0 

7'- I< / 

/ 
--7-'--------" 
/ .  
I I I 1 I I I 

6. Experimental results 

The results for the experiments are summarised in figures 2 and 3. The numerical 
values of these results and also the theoretical limit are given as inserts in the figures, 
The tasks have been defined so that the analytical calculation of the theoretical limit 
of recognition is possible. It is obtained by integrating the multivariate circular 
Gaussian distribution over an offset circle (the decision surface) which is equal to the 

th  MFBBMDBM BP LVQ 
16.4 16.6 16.6 16.8 16.4 17.0 
13.7 13.9 13.9 14.4 14.0 14.6 
11.6 11.7 11.7 12.1 12.5 13.1 
9.8 10.0 10.0 10.5 11.0 12.2 
8.4 8.7 8.7 8.8 10.8 10.7 
7.2 7.7 7.5 7.6 9.7 10.1 
6.2 6.4 6.4 6.7 11.3 10.0 
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c 0 

L 

1 . 5 -  

- + 

- 51 0 -  

E! 
Y 

- BM 2 26.4 26.8 26.7 26.9 26.3 26.5 
3 21.4 21.6 21.5 21.8 21.5 21.8 
4 17.6 17.8 17.6 17.9 19.4 18.8 
5 14.8 14.9 15.0 15.1 19.5 16.9 
6 12.4 12.6 12.6 12.8 20.7 15.3 
7 10.6 10.9 10.7 11.2 16.7 14.5 . r 8 9.0 9.3 9.2 9.5 18.9 13.4 

1 .  MFB ---- 
I ;  
; I .  -- 

. .  BP 
.......... L V Q  ,I ,; 

I ,...I 

1.2,’ 

. .  

-- /- ...i 

cumulative distribution function of the non-central x 2  distribution. The results for 
backpropagation and learning vector quantisation from [ 5 ]  are also included in order 
to make wide comparison possible. All the Boltzmann machines perform well for all 
the studied dimensionalities and clearly better than B P  and LVQ for dimensions d 3 4. 
This is the case for both ‘easy’ and ‘hard’ problems. The differences between the B M  

and MFB results are not significant. This is not surprising because in the thermodynamic 
limit, i.e. the number of units (degrees of freedom) goes to infinity, the mean-field 
theory yields exact results for the network. Although the results for the D B M  differ 
slightly from those of the B M  and the MFB, possibly the same thermodynamic limit as 
for the M F B  does not apply. 

The computation times for the B M ,  the M F B  and the DBM (executed on a serial 
computer) were roughly 6 ,  4 and 3 time units, respectively. In [7] a speed-up factor 
of 10-30 was quoted. In our experiments this did not appear, which could be partly 
explained in terms of the nature of the tasks studied. In the experiments we have 
investigated corrupted data, which was not the case in [7]. 

In contrast to the study by Peterson and Anderson, we have not performed particular 
experiments to examine the number of necessary samples for learning. In all our 
experiments we have used 400000 samples, which we considered to be a sufficient 
amount. We have not found that more samples could help any of the three Boltzmann 
machine methods. 

An important factor of Boltzmann machine algorithms is finding ‘good’ parameters. 
It was quite easy for the BM and more difficult for the M F B  and the D B M .  Comparing 
the B M  with the M F B  and the D B M ,  its behaviour is found to be invariant for a larger 
part of the parameter space. 

7. Conclusions 

Pattern recognition tasks are known to be difficult and require a large amount of 
computation time. The inherent parallelism and generalisation ability of neural 
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networks makes them ideal for statistical pattern classification. In general they need 
a large amount of samples, but once trained they recognise quickly, especially if they 
are implemented by using parallel architectures. 

The ordinary Boltzmann machine is an example of a stochastic neural network. It 
relies on a simulated annealing method and it is virtually capable of yielding the best 
possible solution to any problem. One of its drawbacks is that the stochastic behaviour 
and the cooling can result in extremely slow operation. 

We have reviewed three versions of the Boltzmann machine and compared with 
two other widely used neural network classifiers. It was found that the ordinary 
Boltzmann machine is not necessarily as slow as one would think, and it seems to be 
relatively easy to configure. The mean-field Boltzmann machine demonstrates the 
power of a statistical mechanical approach in that it performs just as well as the 
ordinary Boltzmann machine. It was faster, though not by as much as claimed earlier. 
The performance of the deterministic Boltzmann machine is quite close to them and 
it is still somewhat faster than the mean-field Boltzmann machine. As regards the 
other two methods, the performance of both backpropagation and learning vector 
quantisation exhibit dependence on dimensionality. They performed well only in lower 
dimensions, but are known as fast algorithms. 

The mean-field Boltzmann machine and determinstic Boltzmann machine are viable 
alternatives to the ordinary Boltzmann machine. Besides their higher speed, they are 
also more easily implemented in hardware, especially as parallel systems. In fact, there 
are several silicon implementations of neural network algorithms (even the Boltzmann 
machine) in progress (e.g. see [lo]). They are justified by applications which require 
flexibility and dedicated hardware. 
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